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Abstract: - In this research, the novel comprehensive probabilistic analytical model of the subthreshold 
MOSFET’s performance affected by both random dopant fluctuation and process variation effects has been 
proposed. The up to dated Takeuchi’s physical level random variation model has been adopted. The proposed 
model has been found to be analytic, powerful and comprehensive as it has been derived by using the 
subthreshold MOSFET’s physical equation without any approximation. This model has been verified at the 
nanometer level i.e. 65 nm CMOS process, by using the BSIM4 based Monte-Carlo simulations. The 
verifications have been performed based on both NMOS and PMOS technologies. This model is very accurate 
since it can closely follow the Monte-Carlo based distributions with pleasant goodness of fit test results. 
Furthermore, the proposed model can also serve as the basis for the mismatch modeling and performance 
optimization. Hence, the proposed model has been found to be the potential mathematical tool for the 
statistical/variability aware analysis/design of various subthreshold region operated MOSFET based low 
voltage/low power. 
 
 
Key-Words: - drain current, low power, low voltage, nanometer level, MOSFET, statistical design, 
subthreshold, variability aware design. 
 
1 Introduction 
Recently, the subthreshold (weak inversion) region 
operation has been adopted in many low 
voltage/low power circuits and systems with the 
inferior robustness to the super-threshold (strong 
inversion) operated counterparts as a penalty [1]. 
Due to such robustness reduction, these 
subthreshold operated circuits and systems are more 
susceptible to the imperfection in MOSFET’s 
properties for example random dopant fluctuation, 
line edge roughness and gate length random 
fluctuation which cause the random variations in 
MOSFET’s parameters such as drain current and 
transconductance etc. This susceptibility is a critical 
issue in the statistical/variability aware design of 
MOSFET based low voltage/ low power 
applications as the devices are extremely scaled 
down [2]. 

According to this motivation and the fact that the 
analytical model is a computationally efficient tool 
for circuit analysis and design [3, 4], there are many 
previous researches on the analytical modeling of 
such variation in the subthreshold region operated 
MOSFET for examples [1] and [3]-[7] etc. In these 
researches, the analytical modeling of variation in Id 
which is a key performance metric has been 

focused. The model of the relative standard 
deviation of Id has been proposed in [1].  In [3], the 
analytical models of means and variances of Id have 
been proposed. Later, the analytical modeling of the 
probability density function of Id has been 
performed in [4]. In [5]-[7], the drain current 
variation has been modeled in its per-unit basis 
given by ΔId/Id as a normally distributed random 
variable.  

Of course, the probability density function based 
model as those in [4]-[7] is more powerful as it can 
completely describe the distribution of the drain 
current variation, furthermore, any statistical 
parameters such as mean, variance and moments can 
be determined from the models by using the 
conventional mathematical statistics. On the other 
hand, those in [1] and [3] which have been derived 
based on the specific statistical parameters are less 
powerful since the related distribution is not 
revealed and the other statistical parameters cannot 
be determined. However, the model in [4] has been 
derived based on its own fitted empirical formula of 
Id not the physical one. So, it is not comprehensive 
as the related physical parameters are not 
completely shown. Furthermore, the normal 
distribution based models proposed in [5]-[7] are 
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practically inaccurate due to the loss of accuracy by 
the adopted Taylor’s series based approximation of 
the subthreshold drain current.   

However, it has been observed in [8] that the on 
current of any subthreshold digital circuit and 
system which is Id with Vgs= Vdd, under the effect of 
the process variation has a lognormal distribution. 
However, there is an approximation behind this 
observation that  

 
        

(1) 
 

 
For the up to dated low voltage/low power 

designing which Vds can be very small, this 
approximation is unfortunately ceased to be valid. 
Hence, the resulting observation becomes suspicious 
for such low voltage/low power scenario. 
Furthermore, the affected Id at any value of Vgs apart 
from that at Vgs = Vdd and one at Vgs = 0 which is 
defined as the leakage current, have not been 
mentioned in [8] at all. Motivated by [8], it is 
suspected that such affected Id is not normally 
distributed.  

In [9], the comprehensive analytical models of 
random variations in the super-threshold (strong 
inversion region) operated nanoscale MOS 
transistor have been proposed in term of the 
powerful probability density functions incorporated 
by many related physical parameters. So, they have 
been found to be efficient for the 
statistical/variability aware design of various super-
threshold operated MOSFET based analog/mixed 
signal circuits and systems in the nanoscale regime. 
Motivated by [8], [9] and many problems that have 
been arose in the previous attempts to perform the 
modeling for the subthreshold MOSFET’s 
performance such as those in [1] and [3]-[7] etc., it 
has been found to be worthy to derive the 
comprehensive analytical model of such random 
dopant fluctuation/process variation affected 
subthreshold drain current in term of the powerful 
probability density function. This model must be in 
the similar manner to those in [9] but with the 
devotion to the subthreshold region operated 
MOSFET. In this model, many related physical 
level variables must be incorporated for the 
comprehensiveness. Any approximation cannot be 
allowed in the derivation in order to prevent the 
approximation related accuracy loss.  Finally, this 
model must be applicable to the arbitrary affected Id 
not only the specific ones. 

Hence, in this research, the novel comprehensive 
probabilistic analytical model of the subthreshold 

MOSFET’s Id under the effect of both random 
dopant fluctuation and process variation effects 
which are the major causes of the random variation 
in the MOSFET characteristic, have been proposed. 
Unlike [9] which oriented to the super-threshold 
MOSFET and adopts the classical Pelgrom’s model 
[10], the up to dated Takeuchi’s physical level 
random variation model [11] has been adopted for 
this subthrehold MOSFET devoted model. The 
proposed model has been found to be analytic and 
powerful as it is in term of the probability density 
function similarly to those in [4]-[7] but with more 
comprehensiveness than that in [4] without 
approximation related loss of accuracy as those in 
[5]-[7]. The reason for this is that the proposed 
model has been derived by using the subthreshold 
MOSFET’s physical equation not the empirically 
fitted one like that in [4] and without any 
approximation similarly to those in [5]-[7]. So, both 
analyticity and comprehensiveness can be achieved 
where as the nonlinearity related accuracy can be 
preserved. By using this model, the distribution of 
randomly varied Id can be clearly explored and the 
related physical level parameters which affect such 
variations can be precisely revealed. Unlike [8] 
which concerns only the on and leakage currents, 
the proposed model is applicable to the arbitrary Id 
at any Vgs. Furthermore, this model is unsuspicious 
in the  low voltage/low power scenario as the 
doubtful approximation given by (1) has not been 
used. This model has been verified at the nanometer 
level i.e. 65 nm CMOS process, by using the BSIM4 
based Monte-Carlo simulations. The verifications 
have been performed based on both NMOS and 
PMOS technologies. This model is very accurate 
since it can closely follow the Monte-Carlo based 
distributions with enjoyable goodness of fit test 
results. Furthermore, the proposed model can also 
serve as the basis for the mismatch modeling and 
performance optimization as will be discussed later. 
So, the proposed models have been found to be the 
potential mathematical tool for the 
statistical/variability aware analysis/design of 
various subthreshold region operated MOSFET 
based low voltage/low power applications. 
 
2 The Proposed Model 
In this section, the proposed model will be 
discussed. Unlike the fitted formula based previous 
model in [4], this model has been derived based on 
the physical drain current of the subthreshold region 
operated MOSFET proposed in [12]. By taking the 
effect of the random dopant fluctuation and process 
variation into account, Id can be given by 
 

⎥⎦
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where Cdep and n denote the capacitance of the 

depletion region under the gate area and the 
subthreshold parameter respectively [12]. By using 
the state of the art Takeuchi’s model of physical 
level variation [11] not the classical one in [10] 
which has been adopted in the super-threshold 
MOSFET’s model [9], and the principle of random 
variable transformation [13] with (2) has been used 
as the mapping function, the probability density 
function of Id under the effect of both random 
dopant fluctuation and process variation can be 
given by  
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    where id, TINV, VFB, εox and øs denote any sampled 
value of Id the electrical oxide thickness, flat band 
voltage, gate oxide permittivity and effective work 
function respectively [11].  At this point, it can be 
stated that the comprehensive analytical 
probabilistic model of the subthreshold region 
operated MOSFERT’s Id under the effect of random 
dopant fluctuation process variation has been 
proposed. Unlike [4], this model is highly 
comprehensive because many physical level 
parameters such as TINV, VFB, VTH and øs etc., have 
been incorporated. As the powerful probability 
density functions similarly to those in [4]-[7] and 
[9], the probabilistic behavior of such affected Id can 
be clearly explained and many meaningful statistical 
parameters of Id such as its mean, variance and 
standard deviation etc., can be derived by applying 
the conventional mathematical statistics to the 
proposed model. These features enlighten the 
understanding of the performance variation of the 
subthreshold MOSFET which yields various 
benefits. More effective design/analysis involving 
these variations can be achieved as the related 
statistical parameters can be effectively computed 

and the physical level parameters which affect the 
variations are precisely known. As the analytical 
model, it is a computational efficient designing tool 
[3, 4] since its resulting computational effort is 
potentially smaller than that of the brute force 
Monte-Carlo analysis based on the random 
variations of the physical parameters which is time 
expensive as stated in[14].  

Unlike those in [5]-[7] which rely on the Taylor’s 
series based approximation, this research directly 
uses the principle of random variable transformation 
without any approximation. So, the obtained model 
predicts that the distribution function of such 
affected Id is totally different from the Gaussian 
probability density function which is the prediction 
of those in [5]-[7] as the result of using the Taylor’s 
series based approximation. Instead of the 
traditional normal distribution, the proposed model 
predicts that the subthreshold MOSFET’s Id under 
the effect of random dopant fluctuation and process 
variation has a lognormal distribution with the 
parameters denoted by αId and βId as given 
respectively below.   
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Actually, αId and βId are the mean and the 

standard deviation of a dummy random variable 
defined as ln|Id| which is expected to be normally 
distributed according to the properties of the 
lognormal random variable [15] as the proposed 
model predicts the lognormal distribution of Id. The 
predicted lognormal distribution cannot be 
approximated by the normal one predicted by those 
in [5]-[7]. The reason for this can be seen from the 
consideration of mean, median and mode of such Id 
denoted by μId, 

~

dI  and M(Id) respectively. With the 
proposed model, they can be analytically given by 
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For the extremely scaled MOSFET based low 

voltage/low power circuits and systems which the 
effect of the random dopant fluctuation and process 
variation are crucial [2] and the corresponding 
voltages are extremely low, it can be seen that these 
quantities are significantly different from each other 
as the random dopant fluctuation/process variation 
related terms are not negligible. Such terms of μId 
and M(Id) can be respectively given by 
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So, the subthreshold MOSFET’s Id under the 

effect of random dopant fluctuation and process 
variation cannot be approximated by the normally 
distributed random variable which its mean, mode 
and variance are equal to each other, as does in [5]-
[7]. According to this observation and the other 
mentioned above that (1) is ceased to be valid for 
low voltage/low power designing, the proposed 
model must be undeniably utilized in order to obtain 
the complete and accurate analytical description of 
the low voltage/low power subthreshold operated 

MOSFET’s Id affected by the random dopant 
fluctuation and process variation. By careful 

observation, it can be found that M(Idr) < 
~

drI  <  μIdr 
which resembles the conventional lognormal 
random variable.  

Furthermore, unlike [8] which its results are 
applicable only to the on-current and leakage 
current, the proposed model is also applicable to 
arbitrary values of Id not only on-current and 
leakage one because the model derivation is based 
on arbitrary values of Vgs, not only Vgs = Vdd and Vgs 
= 0. This is the generality of this model. If desired, 
the models for such on-current and leakage-current 
can be obtained from the proposed model as its 
special cases. By letting Vgs = Vdd, the model for the 
on-current (Ion) of the subthreshold MOSFET 
affected by the random dopant fluctuation and 
process variation can be obtained from the proposed 
model as in (11) where ion denotes any sampled 
value of Ion. On the other hand, the model for 
subthreshold MOSFET’s leakage-current (Ileak) 
under the similar effect can also be obtained from 
the proposed model by letting Vgs = 0 as in (12) 
where ileak denotes any sampled value of Ileak. 
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Finally, the corresponding models for the other 

parameters such as gm and gds etc., of the random 
dopant fluctuation/process variation affected 
subthreshold operated MOSFET can be found by 
using the proposed model. This is because these 
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parameters can be related to Id for examples gm = 
∂Id/∂Vgs and gds = ∂Id/∂Vds etc., hence, the 
corresponding models of such parameters in term of 
the probability density function can be found by 
using the proposed model. As the illustration, it can 
be seen that gm under the effect of random dopant 
fluctuation and process variation can be respectively 
given based on (1) and the above definition as 
follows 
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It can be seen that the corresponding model for gm 

denoted by fgm(γm) can be analytically derived by 
solving the following equation formulated via the 
usage of the proposed model i.e. fId(id). 
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where γm denotes any sampled value of gm. On 

the other hand, u and v are dummy variables. At this 
point, it can be seen that this gm modeling can be 
simply performed by the usage of the proposed 
model. In the subsequent section, the verification of 
the proposed model will be mentioned. 
 
3 The Verification 
The verification of the proposed model has been 
performed in both qualitative and quantitative 
aspects on both NMOS and PMOS technologies at 
the nanometer regime based on the 65 nm CMOS 
process technology. For the qualitative verification, 
the estimated distribution of the percentage that 
ln(Id) deviated from its nominal value ln(Id,Nom), 
obtained from the model, has been graphically 
compared to that of the similar metric obtained from 
the Monte-Carlo SPICE simulation of the diode 
connected subthreshold region operated MOSFET 
modelled by BSIM4 (SPICE LEVEL 54) which 
have been chosen as the benchmark circuit. Let such 
verification metric be denoted by δln(Id), it can be 
mathematically defined as 
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where Id,Nom which denotes the nominal value of 
Id can be mathematically given by  
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This metric has been chosen because it is 

convenient to perform the comparative distribution 
plots of δln(Id) as it is also expected to be normally 
distributed since it is a linear function of ln(Id) 
which is expected to has a normal distribution as the 
proposed model predicts a lognormal distribution 
for Id. It should be mentioned here that the 
benchmark circuit for the verification on the NMOS 
technology is depicted in Fig.1 while that with 
PMOS based diode replaces by the NMOS one is 
used for the verification on the PMOS technology as 
shown in Fig.2. 

On the other hand, for the quantitative point of 
view, as the proposed model predicts that Id has a 
lognormal distribution with parameters given by (4) 
and (5), the chosen strategy is to validate the 
acceptance of the hypothesis that ln(Id) is normally 
distributed with mean and standard deviation given 
by (4) and (5) respectively and the KS-test has been 
found to be applicable for this research according to 
suggestion in [16] that the KS-test is powerful for 
the normality test. Furthermore, its statistic is much 
simpler than the other powerful tests such as 
Cramer-von Mises test and Anderson-Darling test 
[17]. If the mentioned hypothesis is accepted at a 
certain confidence then it is verified that Id has a 
lognormal distribution with parameters given by (4) 
and (5) at the similar confidence. As this is the 
prediction obtained from the proposed model, the 
accuracy of the model is immediately verified with 
such confidence.  

Since the KS-test relies on the cumulative 
distribution function, it is worthy to derive such 
function of ln(Id) at this point. By using the 
proposed model, the probability density function of 
ln(Id) and the cumulative distribution function of 
ln(Id) can be respectively given by  
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and 
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where ( )xerf denotes the error function of  any 

arbitrary variable, x which can be mathematically 
defined as 

 

( ) .)exp(2
0

2 duuxerf
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∫ −=
π

           (19) 

  
According to [16], [18] and [19], the concept of 

the KS-test is to performed the comparison of the 
obtained test statistic (KS) and the critical value (c) 
where it can be stated that any model fits its target 
data set if and only if its KS is not exceed c. For this 
research, KS can be defined as 
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where  Fln(Id)[ln(id)]|circuit and   Fln(Id)[ln(id)]|model 

represent the estimated cumulative distribution 
function of ln(Id) obtained from the proposed model 
and that of the similar quantity obtained from the 
benchmark circuit respectively. Alternatively, if the 
Cramer-von Mises test has been chosen, the 
corresponding test statistic will be given according 
to [17] by 
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where N denotes the numbers of observation. On 

the other hand, if the Anderson-Darling test has 
been chosen, the test statistic for this research can be 
given according to [17] as follows 
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where Ψ[ln(id)] which denotes the weighting 

function can be given for this research based on [17] 
by  
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It can be suddenly seen that the statistic of the 

Kolmogorov-Smirnov test given by (20) is the 
simplest one so, this test has been chosen due to 
such simplicity. Furthermore, as the confidence 
level of the test is 99% or α = 0.01 in the other 
words, c can be given by [19] 

 
                          

Mn
c 63.1
=                              (24) 

 
where nM denotes the number of Monte-Carlo 

analysis runs. Before proceed further, it should be 
mentioned here that nM = 1000 which yields c = 
0.0163. In the upcoming sections, the verification of 
the model on both NMOS and PMOS technologies 
will be discussed.    

+VDD

-VSS

 

Fig.1 The NMOS diode connected transistor 
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-VSS

 

Fig.2 The PMOS diode connected transistor 

 
3.1 NMOS based model verification 
As the qualitative verification, the graphical 
comparison for the distribution of δln(Id), is depicted 
in Fig.3 which a strong agreement between the 
model based distribution and the interpolated 
benchmark circuit based one can be observed. 
Hence, the NMOS based qualitative verification of 
the proposed model at the nanometer level gives a 
result with satisfaction. 

For the quantitative verification, it can be seen 
by using (20) that the resulting test statistic can be 
found as KS = 0.01377 which is smaller than c = 
0.0163 This can be interpret in the straight forward 
manner that the hypothesis that ln(Id) is normally 
distributed with mean and standard deviation given 
by (4) and (5) respectively is accepted with 99% 
confidence. According to the interpretation of the 
verification result mentioned above, it can be seen 
that the accuracy of the proposed model has been 
verified with 99% confidence. At this point, the 
nanometer regime NMOS based verification of the 
proposed model has been accomplished in both 
aspects. 

 
 

3.2 PMOS based model verification 
As the qualitative verification, the similar 

graphical comparison for the distribution of δln(Id), 
is depicted in Fig.3 which a strong agreement 
between the model based distribution and the 
interpolated benchmark circuit based one can also 
be seen. Hence, the nanometer level PMOS based 
qualitative verification of the model also gives a 
result with satisfaction.  

For the quantitative verification, it can be seen 
by also using (20) that the resulting test statistic can 
be given by KS = 0.01193 which is also smaller 
than c = 0.0163. By the interpretation in the similar 
manner to the previous subsection, the proposed 
model is accurate with 99% confidence. At this 

point, the PMOS based verification of the proposed 
model based on the nanometer level CMOS 
technology has been accomplished in both aspects. 

Finally, it can be concluded that the proposed 
model is better fit to the PMOS technology than the 
NMOS one due to the closer agreement seen in the 
PMOS based comparative plot and the 
corresponding smaller KS statistic. 

                Probability 

 

 

 

 

 

 

 
 

δln(Id) 
 
 Fig.2. NMOS based comparative distribution plot: 
The model based (line) v.s. The transistor based 
(dash) 

   Probability 

 

 

 

 

 

 

 

 
 

δln(Id) 
 

Fig.3. PMOS based comparative distribution plot: 
The model based (line) v.s. The transistor based 
(dash)     
 
 
4 Application for Mismatch Modeling 
By using the proposed model, various statistical 
information of the subthreshold MOSFET’s Id such 
as mean, median, mode, variance and moments, can 
be obtained analytically. However, these quantities 
are for a single transistor. For the mismatch in Id of 
two or more MOSFETs, the modeling can be 
performed by using the proposed model as the 
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mathematical foundation. This is an interesting 
application of the proposed model apart from the 
simple ones such as being the basis for the 
calculation of statistical parameters etc. In order to 
do so, let such mismatch in Id be defined as ΔId, its 
variance which is used for this mismatch modeling 
can be given by 
 

  )1(2 ,
22

circIdIdId ρσσ −=Δ              (25) 
  
where            and                   denote variance of 

Id for a single transistor and the drain current 
correlation coefficient of the MOSFETs within any 
interested circuit respectively. With the proposed 
model,        can be found as follows 
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On the other hand, ρId, circ can also be determined 

by using the proposed model. For the closely spaced 
transistors which are strongly correlated, ρId, circ can 
be given by (27). At this point,           which model 
the subthreshold drain current mismatch can be 
determined by using (25)-(27). It should be 
mentioned here that this model is suitable for the 
closely spaced transistors.  
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For the distanced transistors which are lowly 
correlated, ρId, circ can be given by 
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So,       for such distanced transistors can be 

determined by using (25), (26) and (28).  
It can be observed that ρId, circ is maximized 

where as            is minimized for closely spaced 
transistors. For the distanced devices, the opposite 
results are obtained. This is because the following 
term is included in ρId, circ for such closely spaced 
devices i.e. (27). 
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 On the other hand, the corresponding term in ρId, 

circ for the distanced transistors i.e. (28), is  
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  From this observation, it can be seen that the 

best matching can be achieved for the closely 
spaced devices and getting worse as the distance 
increased 

5 Application for Optimization 
In this section, some discussion regarding to the 
other interesting application of the proposed model 
apart from those mentioned above such as being the 
basis for the calculation of statistical parameters and 
the mathematical modeling of the mismatch etc., 
will be given. Such interesting application is being 
the mathematical basis for the optimization schemes 
with the minimization of variation in Id of the 
subthreshold MOSFET as the goal. A candidate 
simple objective function can be given based on the 
proposed model as follows 

2
Idσ circId ,ρ

2
Idσ

2
IdΔσ

2
IdΔσ

2
IdΔσ
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   If the target is to minimize the mismatch in Id 

among various transistors then 2
IdΔσ   can be used 

which yields the following objective function.  
 
min ][ 2

IdΔσ                 (32) 
 

where 2
IdΔσ  can be derived from the proposed 

model as mentioned above.  
For the optimization of a single MOSFET, a 

more rigorous objective function in term of 
probability can be given as follows 

 
max }][Pr{ ,Nomdd II =              (33) 

 
 where }Pr{ ,Nomdd II =  can be interpreted as the 

probability of obtaining no variation in Id. 
According to [13], it can be mathematically defined 
by using the proposed model as follows 
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where χ ≠ 0 even though it is very closed to zero.  

In order to save the computational effort, 
}Pr{ ,Nomdd II = can be given by 
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  In a more relax manner, the goal of the 

optimization can be simply keeping Id within its 
acceptable predetermined boundaries denoted by 
Id,min and Id,max for the lower and upper bounds 
respectively.  Based on the proposed model, these 
boundaries can be given by 
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  and 
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For this less rigorous optimization, the following 

objective function has been found to be promising 
 
     max }][Pr{ max,min, ddd III ≤≤              (38) 

   
where }Pr{ max,min, ddd III ≤≤ denotes the 

probability of obtaining Id within the acceptable 
boundary. }Pr{ max,min, ddd III ≤≤  can be simply 
derived by using the proposed models as follows 

 

d

I

I
dIdddd diifIII

d

d

∫=≤≤
max,

min,

)(}Pr{ max,min,      (39) 

 
At this point, it can be seen that the proposed 

model can serve as the efficient mathematical basis 
for the optimization in the designing of subthreshold 
MOSFET based circuits and systems affected by the 
random dopant fluctuation and process variation 
 
6 Conclusion 

The novel comprehensive probabilistic analytical 
model of the subthreshold MOSFET’s Id under the 
effect of both random dopant fluctuation and 
process variation effects which are the major causes 
of the random variation in the MOSFET 
characteristic, have been proposed. The up to dated 
Takeuchi’s physical level random variation model 
[9] has been adopted as the modeling basis. The 
proposed model has been found to be analytic and 
powerful as it is in the form of the probability 
density function but with more comprehensiveness 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Rawid Banchuin

E-ISSN: 2224-266X 45 Issue 2, Volume 12, February 2013



than that in [4] and without loss of accuracy as those 
in [5]-[7]. The proposed model is applicable to the 
arbitrary Id at any Vgs unlike [8]. This model is also 
unsuspicious in the low voltage/low power scenario 
as the doubtful approximation has not been used.  

This model has been verified with the 65 nm 
CMOS process by using the BSIM4 based Monte-
Carlo simulations. The verifications have been 
performed based on both NMOS and PMOS 
technologies. These models are very accurate since 
they can closely follow the Monte-Carlo based 
distributions with satisfaction guaranteed goodness 
of fit test results. Furthermore, the proposed model 
can also serve as the basis for the mismatch 
modeling and performance optimization as 
mentioned above. Hence, the proposed models have 
been found to be the potential mathematical tool for 
the statistical/variability aware analysis/design of 
various subthreshold region operated MOSFET 
based low voltage/low power circuits and systems.  

Finally, as this research is focused on the 
conventional MOSFET, it is worthy to perform the 
similar modeling for those unconventional such as 
multiple input floating-gate MOSFET [20] etc., 
which have been adopted in various subthreshold 
region operation based applications for example 
[21]-[23] etc.    
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